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SUMMARY

This report presents the results of four aerodynamic studies that were in

support of a broader, preliminary inquiry concerning the potential use of

downward-deployed tethered sub-satellites for in-flight aerothermodynamic re-

search. There are a multitude of questions regarding the general tethered

satellite concept and the present report addresses only a few of these. A

method for estimating drag and local surface pressure and shear on orbiting or

re-entering bodies is described, and examples based on the planned TSS-2 are

given. The problems of pressure measurement are explored, taking into ac-

count thermal transpiration, lag time, and the disturbed flow field created by the

satellite body. The performance of an aerodynamic stabilizer, a ring-tail

design, is calculated and its influence on satellite motion is illustrated. A

method for optimizing future satellite shapes for desired aerodynamic proper-

ties in transitional rarefied flow with given geometric constraints is proposed

and examples are shown.
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Subscripts

fm free molecular

i inviscid flow

reference area

chord of stabilizer (Fig. 8)

drag coefficient

lift coefficient

moment coefficient

friction coefficient

pressure coefficient

diameter

fraction of specularly reflected molecules

enthalpy (m/s) 2

altitude (kin)

Knudsen number

tail moment arm (Fig. 8)

pressure

static pressure at station x

impact pressure at station x

freestream pressure

radius of satellite and tail

molecular speed ratio

temperature

time

velocity

distance upstream from stagnation point

angle of attack

see Fig. 8

see Fig. 11

see Fig. 8

mean free path

kinematic viscosity

oo freestream

w wall
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1. INTRODUCTION

The usefulness and feasibility of aerothermodynamic experimentation

using downward-deployed, tethered, sub- satellites have been discussed for

several years, cf. Refs. 1- 6. The tethered satellite system (TSS) identifies a

concept involving a vehicle, such as the NASA Space Shuttle Orbiter, in low

Earth orbit at, say, 220-230 km altitude, towing a small, instrumented sub-satel-

lite which is deployed by a tether as much as 100-120 km downward. Some

applications of this concept involve upward deployment, but we are only con-

cerned with downward deployment here. In this fashion, the atmospheric

conditions and aerothermodynamic phenomena at 100- 130 km would be made

accessible for study over extended times. The excessive aerodynamic drag

and related propulsion requirement that excludes larger vehicles from

prolonged operations at these lower altitudes would be avoided. There is much

interest and value in both the atmospheric data and the aerothermodynamic

research results expected from such experiments.

Many of the essential points in regard to the conditions imposed upon

aerothermodynamic research application of a tethered satellite system (TSS)

orbiting at 100-130-km altitude are discussed in Refs. 1-6. At this time, it is

generally assumed that operations at 130 km will be feasible, and there is some

hope that the lower altitude of 100 km may be possible. Demonstration of

deployment of a shorter tether of approximately 20-km length and a 23-kg

satellite has been scheduled to occur in 1991, using an unmanned booster

rocket as the carrier (Ref. 7). The more ambitious TSS-1 experiment involving

an upward deployment of 20-km, and a satellite of 500 kg has been scheduled

for 1992. Detailed planning for other experiments with longer tethers is being

delayed pending the outcome of these 1991-92 trials.
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The tethered sub-satellite to be used for aerothermodynamic experiments

has been designated TSS-2, so the TSS identity is used as a generic term in

the discussion to follow. Also, for brevity, we shall refer to the "satellite"

interchangeably with sub-satellite in most places. At this time the TSS-2

configuration is assumed to be the same 1.6-m-diam sphere as used for TSS-I.

Configurations of subsequent satellites have not yet been determined.

In anticipation of the successful outcome of the initial tethered satellite

deployments, there was a desire to identify and describe specific experiments

that might be conducted using TSS-2 and any follow-on satellites. The first

author and a colleague, Professor F.C. Hurlbut, of the University of California

at Berkeley, collaborated in recommending the experiments that were believed

to be of high priority because of their technical value, their suitability for early

implementation, and their probability of success under the expected conditions

(Ref. 6). Some aerothermodynamic data of greatest interest for design of

re-entry vehicles, e.g., rates of real gas chemical processes, are not given the

attention that may be expected owing to the low density and probably frozen

gas-phase processes at the planned TSS-2 orbiting altitude of 130 km (Ref. 8).

Although such experiments are not emphasized for TSS-2, their priority would

become high if significantly lower altitudes (= 90 km) of TSS orbits prove

feasible. Other experiments of potential value are not proposed because of the

time needed in preparation or uncertainty of success.

With the discussions and recommendations of experiments already pub-

lished in Ref. 6, the objective of this report is to give the results of several

supporting analyses carried out as part of the study of potential aerother-

modynamic experimentation with tethered sub-satellites conducted under

NASA Research Grant NAG-I-878. These concern (1) a method for estimation

of local and overall aerodynamic forces on bodies in transitional rarefied flow,

(2) problems and possibilities of aerodynamic probes for determining various
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atmospheric and flow- field properties under TSS conditions, (3) effectiveness

of aerodynamic stabilization of TSS, and (4) optimum TSS shapes contributing

to achievement of lower orbit altitudes and reduced flow disturbance.

AERODYNAMIC FORCES ON TETHERED SUB-SATELLITES

The overall size of the earlier sub-satellites is expected to be small; the

TSS-1 and 2 currently discussed are 1.6-m-diam spheres with appendages of

comparable dimensions, i.e., 1-2 m. At 130 kin, using data from Ref. 9 for an

exoatmospheric temperature of 800 K, Bird's "variable hard sphere" (Ref. 10)

mean free path is 8.9 m, giving an overall Knudsen number of Kn = _. / d = 5.6

for d = 1.6 m. On the same basis, at 100 km altitude, Kn = 0.056. The tethers

are expected to have diameters of only 1-3 mm, thus experiencing free-

molecular flow at all of the altitudes considered. However, the overall Knudsen

numbers of the 1.6-m-diam sphere indicate that pressure and shear on the

surface of the sphere must be computed by a procedure for transitional flow.

The assumption of free-molecular flow at the higher altitude of 130 krn is

justified for approximate calculations only. Therefore, some effort has been

expended to develop a simple, transitional-flow method for estimating local

pressure and shear. This will be useful for estimating forces and moments on

the satellite and local conditions where instrumentation may be connected to

the satellite surface.

The method of calculation is fully described in Ref. 11, so there is no need

to present that material here. However, some examples of local pressure and

friction coefficients computed for a 1.6-m-diam sphere orbiting at 7.5 km/s

velocity with a surface temperature of 350 K at various altitudes are shown in

Figs. la-lc. Velocity of the tethered satellite and other conditions obviously

will vary for different altitudes. Assuming a spherical Earth of 6378-km-radius,
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gravitational constant of 9.81 m/s 2, and a towing spacecraft orbiting at 220 km

and 7.777 km/s with h = sub-satellite altitude in km,

U=o= 7.777 (h + 6378) / (220 + 6378)

= 0.00118 h + 7.518 km/s (1)

Total drag coefficients as a function of altitude are shown in Fig. 2. Also

shown in Figs. 1 and 2 are results for this case given in Ref. 8. The more

sophisticated and accurate, but far more computation-intensive Direct Simula-

tion Monte Carlo (DSMC) method was used in obtaining the data in Ref. 8. In

light of the good agreement seen in Figs. 1-2, it is suggested that the simpler,

quicker method of Ref. 11 is suitable for use in preliminary studies of TSS

designs.

It is important to note that fully accommodated diffuse reflection of air

molecules at the satellite surface has been assumed in regard to both normal

and tangential momentum transfer in the calculations of Figs. 1-2. This is not a

critical issue in predicting CD when only spherical shapes are of concern, but it

is a matter of much concern when local pressure and shear are calculated, or

when lift and drag of many other possible satellite shapes are considered.

Figures 3a and 3b, for example, illustrate the effect on local Cp and Cf cor-

responding to three different assumptions regarding the normal and tangential

momentum accommodation coefficients (E) for the 1.6-m-diam sphere at 130-

km altitude. A value of E= 0 in these calculations corresponds to an assump-

tion of diffuse reflection of all molecules impacting and leaving the satellite

surface. If completely specular interaction is assumed, then E = 1. There is

evidence that E is influenced by the incidence angle, so that E = E(9i), with a

tendency for E to be near 0 for near normal impact and near 1 for near grazing

or tangential impact in a possible situation. Therefore, as an indication of how

this type of variation of E may affect aerodynamic forces, a case is shown
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where it is assumed that E = sin60. This is an arbitrary but not unrealistic

approximation to a phenomenon that is not well understood. The need for

tethered satellite experiments on gas/surface interaction is a major theme in

Refs. 1,2, and 6.

Overall drag coefficients obtained in these calculations, for an altitude of

110 km, using the method of Ref. 11, are:

For diffuse accommodation, CD = 1.73

For E = sin6e accommodation, CD = 1.50

For specular accommodation, CD = 1.54

As stated above, much greater overall difference would be predicted for

shapes such as slender cones, and the differences in local Cp and Cf are

readily apparent in Fig. 3. It is seen that, although total drag of a sphere is not

a sensitive indicator of the nature of gas/surface interaction, or even an

average E, a local measurement of Cp or Cf at certain stations on a sphere

would be much more interesting. Of even greater value would be the sys-

tematic measurements of momentum exchange described in Ref. 6.

The free-molecular-flow drag on the tether has been thoroughly analyzed

in Ref. 12. Owing to the great length of tether of interest for reaching 100-130

km altitudes, the drag of the tether will exceed the drag of the 1.6-m-diam

sphere considered herein. For example, if the towing vehicle is at 230 km and

the 1.6-m- diam sub-satellite is at 130 km, depending on the particular set of

atmospheric data and tether diameter, the drag on the sphere will be on the

order of one Newton and the drag of the tether will be 10-20 times as large.

Drag increases dramatically if much lower altitudes are considered because

the air density increases roughly a factor of 10 for every 15-km decrease in

altitude. Of course, weight of the TSS greatly exceeds aerodynamic drag at the

contemplated altitudes.
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PRESSURE/DENSITY/TEMPERATURE MEASUREMENTS

Data on ambient or freestream properties in the 90-130-km altitude range

are of considerable interest, and it is not a simple task to obtain them. A

significant problem is created by the flow field of the sub-satellite itself, and a

second major obstacle is the uncertain knowledge of the composition of air at

the time and place when measurements are made. Regarding the flow-field

interference, Ref. 8 gives computed density, temperature, and air species fields

which can be used to assess the problem. With specific reference to an

altitude of 130 km, those computations show that chemical processes are

essentially frozen throughout the flow field, so that air composition may be

assumed constant. However, the results of Ref. 8 also show that the density

and temperature in the flow for several meters upstream of the sphere are

much different from the freestream static values. With regard to temperature, it

is the translational temperature that changes, both rotation and vibration are

essentially frozen.

We are concerned with the feasibility of obtaining useful data on flow-field

and freestream properties by means of pressure measurements. Thus, it is not

sufficient to merely record a signal from a pressure transducer, we have to

know how to relate that signal to the pressure at a specified flow-field location.

That entails procedures to account for rarefied flow within the pressure-probe

plumbing from orifice to transducer and lag time of the system. Further, if there

is hope to insert a probe into a region where freestream conditions exist, a

probe system capable of reaching distances of order of 10 m from the 1.6-m-

diam sphere is needed at 130- km altitude. Otherwise, computations will have

to be relied on in attempting to extrapolate from close-in to freestream condi-

tions.

First, the levels of pressures and the extent of the interference field are
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investigated. It must be remembered that certain assumptions and approxima-

tions influence these results. For example, diffuse reflection and full accom-

modation of reflected molecules is the assumed gas/surface interaction model.

A satellite outer surface temperature of 350 K and a pressure transducer

temperature of 300 K are also assumed. Ambient conditions are taken from

Ref. 9 for exoatmospheric temperature of 1200 K.

Treating the highly diffuse "shock layer" of the spherical satellite as a

perfect gas with freestream constituents and using the results of Ref. 9, the

static pressure, pl(x), along the stagnation streamline may be calculated as a

function of x, the coordinate directed upstream from the forward stagnation

point on the sphere. These are shown in Fig. 4. Then, by using Ref. 13, the

pressures pt(x), that are predicted in the measurement device connected to a

free- molecule impact pressure probe, e.g., an ion gauge, may be computed.

Figure 5 gives some results of this exercise. It may be noted that ambient

pressure, from Ref. 9, is 0(10 3) for this case. Predicted static pressures, pl(x),

that would be measured within a transducer at various x-distances are given in

Fig. 6 for a transducer temperature of 300 K and 130 km altitude. In both

figures I = length of tubing from orifice to transducer and d = diameter of tubing.

Because of strong thermal transpiration effects, the measured pressures, pl(x)

and pt(x), differ greatly from the "true" static and impact pressures. These

differences depend primarily on the thermal gradients across the pressure-

sensing orifice and along the tubing connecting orifice to transducer and the

length-to-diameter ratio of the tube. Orifice and tube inside diameters are

assumed equal here.

Values of x > 1 m are not considered because that seems a likely upper

limit on a fixed or simple traversing probe extending upstream of the forward

stagnation point of the 1.6-m-diam sphere. Obviously, a more complicated and

heavier mechanism could be devised to extend the probe upstream to greater
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distances.

It is noted that the predicted impact pressure, within the transducer, is

roughly constant with x and is between 10 4 and 10 .3 torr, a range associated

with ion gauges. Measured static pressures within 1 m or less distance is

0(10 4) torr within the transducer for the probe conditions assumed, so the

same transducer could be used for both impact and static measurements.

The low pressures immediately cause concern regarding lag time in the

response of the measurement system. At 130 km altitude it is appropriate to

assume free-molecular flow in the orifice, tubing, and transducer, therefore the

method of computing lag time follows Ref. 14. For this purpose, it is necessary

to assign the volume of the measuring device, the length and diameter of

tubing, orifice size, temperatures in the system, gas constant, and the initial

and final pressures in the transducer. Diffuse reflection and full accommoda-

tion are assumed. The following results on lag time are based on a traversing

probe having three different orifice and tube radii, a tubing length of 100 cm,

and transducer volumes of 100 to 400 cc. Temperatures are taken to be 350 K

at the orifice and 300 K at the transducer. By making the calculation for a given

ratio of beginning and ending pressures, the results then apply to either impact

or static pressure measurements.

Figure 7 gives the lag times for an arbitrary ratio of initial and final pres-

sures of 0.8. The importance of plumbing size is very evident. Optimum tubing

and orifice sizes are functions only of transducer volume, and are given below:

Transducer Optimum Tubing
Volume (cc) & Orifice Radius (cm)

1O0 2.6
200 3.3
3OO 3.8

400 4.2
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These optimum radii are so large that they are not included in Fig. 7.

This review of the pressure measurement problem reveals that the level of

the expected pressures and the lag time of the system do not seem to pose

serious obstacles. It is clear that large theoretically-based corrections will be

necessary to convert the recorded pressures to their corresponding values at

the point in the flow field where the sensing orifice is located. These correc-

tions are partly due to low- density flow phenomena within the pressure probe

system and partly due to the interference field created by the satellite. The

calculations have been made for conditions at 130-km altitude, because it is

believed that the TSS-2 will be deployed to that altitude. Flow-field interference

effects would be reduced at lower altitudes (cf. Ref. 8) but rarefied flow in the

probe system would remain a factor.

Electron beam fluorescence is a technique for flow field surveys that

seems applicable in the tethered satellite case. Recent reviews of the pos-

sibilities of such measurements in flight experiments are available in Refs. 15

and 16. Pioneering Canadian research (Ref. 17) has produced impressive

results on atmospheric density and rotational temperature in the altitude range

of 130 km by the use of electron-beam instrumentation on a sounding rocket.

Later experiments by others are cited in Ref. 15. Thus, if not for TSS-2, later

TSS should include electron-beam devices for surveying the flow field and, if

feasible, probing into the free stream.

EFFECTIVENESS OF AERODYNAMIC STABILIZATION

There is an obvious reason for concern over maintenance of a desired

satellite attitude and knowledge of variations in attitude when making flow-field

measurements. Following from earlier remarks about the relatively low

aerodynamic drag on the satellite, it is clear that aerodynamic stabilization can
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only provide small restoring moments. However, "tail fins" may contribute

usefully to the stabilization. An analysis of the degree of effectiveness of

stabilizing by aerodynamic means follows.

Although flat-plate tail fins have been suggested by others, we have

chosen to analyze a ring-tall stabilizer because it offers an equal amount of

restoring moment for a given angle of attack in any plane. Obviously the tail

moment arm, stabilizer area, and pre-set angle of incidence may be varied, but

only one configuration is analyzed here. It suffices to quantify the magnitude of

restoring moment that may be expected. Figure 8 shows the particular design

chosen for calculations. Greater restoring moment could be achieved if larger

values of L and R were assumed.

When angle of attack changes, some part of the stabilizer will be shielded

by the spherical satellite. For simplicity, we have assumed that negligible force

acts on the part of the ring tail in the "shadow" created in the flow by the sphere.

This is indicated in Fig. 8. Also for simplicity, free-molecular flow is assumed in

calculating forces for 130-km altitude. That is a very reasonable assumption

for this calculation.

The pressure and fluid shear stress at stations on the circular ring tail are

(cf. Ref. 18),

Pfm/P- = [(1 + E) Soo(1 / ._t'_)cos e +

0.5 (1-E) _/Tw / Too]exp (- Soo2cos2 0) + {(1 + E) (0.5 +

Soo2 cos 2 0) + 0.5 (1- E) _/Tw/Too_ Soo cos0}[1+

err (Soocose)] (2)

and

_'fm/Poo= [(l-E) Soosin 0/N/-_]{exp (- Soo2cos2e) +

_-_Soocose [1 + erf (Soocose)]} (3)
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The local value of 0, in radians, is

e = 1.5708 - a cos

where cos _ is treated as a positive quantity.

by

(4)

Increments of moment about the center of gravity of the satellite are given

_o _max
Mp = 2 C L R P=o (P / Poo- 1) _/cos 2 _ d_ (5)

Pm.xM1; = 2 C R 2 p,= (1; / Poo)_ cos 2 _ d_ (6)

"0

where Mp is the contribution of pressure acting normal to the surface and M_ is

the contribution of the shear acting tangentially to the surface of the ring. The

integration proceeds from _ = 0 to _ = _max, where

_max = 3.1416 if (X > tan 1 (2R/L) (7)

and

_max = 1.5708 + arc sin [(L / R) (1 - cos o_ / sin _)] (8)

when 0 < or,_< tan 1 (2R/L)

A flare angle, or greater chord, radius, or moment arm may be specified in

the tail design if added restoring moment is desired and if limitations on size

permit. If rocket thrusters are used for control of the satellite, the potential

interaction with aerodynamic control surfaces obviously must be considered.

Figure 9 gives the restoring moment calculated for an example in which the

center of gravity is assumed to be at the center of the sphere, tail moment arm

(from center of gravity to mid chord) is 1.6 m, tail chord is 0.4 m, tail radius is

0.8 m, and altitude is 130 km. Diffuse reflection has been assumed.

When lower orbital altitudes are involved, negative lift or down force may
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be a primary aerodynamic design objective. In that case, satellite configuration

may not be the sphere-with- stabilizer analyzed in this section, and transitional-

rather than free-molecular-flow calculation procedures would apply. Reference

11 offers a procedure for such calculations, or, for more refined analysis, the

DSMC method discussed in Ref. 8 could be used.

The further evaluate the magnitude of tail effectiveness that could be

anticipated, it is interesting to briefly examine the response of a TSS to a

disturbance that imposes a rotational motion on the body.

Dynamics of the satellite with a stabilizing tail may be examined in a

simplified way by using the equation for plane motion of a rigid body rotating

about a fixed axis with moment of inertia I and restoring moment M,

oo

I(_=-M (9)

The solution of Eq. (9), for small a, such that sin Or, = (X,, and for (x = 0 at

t=0, is
(Zr'

t = (1/Wo) / d(x / {1 - M sin 2 (or, / 2) / (I w02 (x)} °'5 (10)

Jo

If M = K(x, a good approximation, and if

sin 2 ((x, / 2) < I W02 / (4 K)

or

(Xmax = sin "1 w0 "_ I / K where w0 = (d(x /dt) at

then

t=2_ 1_/7_K

A higher order approximation for t is

t = 2/1: "_ I / K (1 + 0.25 sin 2 (of, / 2) + ...)

t=0, (11)

(12a)

(12b)
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Treating the TSS as a sphere of uniform density, weighing 500 kg and

having a 1.6-m diameter, an example of the predicted motion is given in Fig. 10.

From Eq. (12) it is noted that the period is not affected by Wo, although the

maximum amplitude is. The period in this example exceeds two minutes. It is

expected that the c.g. of the tethered satellite will undergo motions imposed by

its tether. The analysis described here only concerns the rotation of the

satellite about its c.g., i.e., variation of angle of attack. This motion is of interest

in connection with on-board experiments that may be affected by satellite angle

of attack.

OPTIMIZED SATELLITE SHAPES FOR LOWER-ALTITUDE OPERATIONS

Previous discussion has concerned a 1.6-m-diam spherical satellite be-

cause it has been assumed that the first downward- deployed system will have

that configuration. However, if later tethered satellites are used for atmos-

pheric and aerothermodynamic measurements, lower orbital altitudes are cer-

tain to be desired. In that event, serious consideration must be given to the

possibility of reducing the relative extent of the flow disturbance created by the

satellite, i.e., the dimensions of the satellite's flow field. This is a concern if

probing of freestream conditions is to be made easier. Another factor to

consider is the possibility of generating useful levels of negative lift or down

force to help the satellite penetrate to lower altitudes. Alternately, minimizing

lift-to-drag (i.e., - L/D) could be a goal.

The aerodynamic characteristics of a non-spherical satellite were briefly

examined to gain some appreciation of the change in shape and forces that

could be expected. In view of the expected need to exert additional downward

force to help maintain lower orbital altitudes and the desirability of a more

pointed nose to minimize upstream flow disturbance, a right-circular cone split
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along its horizontal plane of symmetry (i.e., a flat-bottom cone) was selected as

the generic shape. For simplicity, a sharp nose was assumed, although at

least a slight degree of blunting would be expected in a final design. Figure 11

is the sketch with nomenclature of this configuration and, Fig. 12 is an isometric

view with the addition of wings that fold underneath the cone when not in use.

Other constraints were as follow:

(1) zero angle of attack.

(2) volume equal to or greater than the 1.6-m-diam TSS sphere

(2.14m 3) but not more than 4 m3

(3) maximum length of 4 m

(4) wing total area equal to cone bottom area

The approximate analysis procedure of Refs. 19-20 is very suitable for

preliminary optimization or screening calculations of the type performed. Lift

and drag coefficients were calculated by that method and combined with an

optimization program (Ref. 21) to define flat-bottom cones producing "maxi-

mum" negative lift or down force at altitudes of 100 to 130 km under the

constraints listed above.

To implement the procedure of Refs. 19-20, one must have lift and drag

coefficients under both inviscid-flow and free-molecular-flow conditions. For

the half-cone of Fig. 11, with area of the flat bottom taken as the reference area

and assuming S= sin 6 >> 1, except on the flat bottom,

CLi =- 1.83 (sin 8) 1"87

Coi = 0.915 R (sin (_)1.87 tan 8

CLfm = - (T w/I; / To=)0"5 (sin 8) / Soo

(13)

(14)

(15)

16



CDfm =/I; sin _ { tan 8 sin _ + (T w _; / Too)°'s •

(1/2S==) tan _ + cos 5} + "_"/(2 Soo) (16)

Following Refs. 19-20, parameters defined as

Pn D = _/(U / _)oo s _ PFA / WA (Ho=/{0.1U= 2 + 0.5 Hw} )0.63

and

Pn L = Pn D (PPA/PFA) °'25

are calculated and used to obtain

C D = (CD)-CDi)/(CDf m- CDi )

= _/2.6 / (2.6 + PnD1.6)

and

(17)

(18)

(19)

CL= (C L-CLi )/(CLf m- CLi)

= _ 2.6 / (2.6 + PnL1.6) (20)

Then, with Eqs. (13-16), values of C D and C L may be calculated. This

procedure was programmed as a subroutine linked to the design optimization

code (Ref. 21). Half-cone configurations meeting the given design criteria and

producing the most-negative lift or ( - CLA) at each altitude were determined.

Table 1 gives the results of this study. Note that it is the product of lift

coefficient and reference area, not CL alone, that matters in this case. It should

also be noted that these results are affected by the particular constraints

adopted, and the optimum shapes may change if these conditions are altered.

Table 1 presents characteristics of the flat-bottomed, sharp cones

predicted to give greatest down force under the constraining conditions listed

on the preceding page. The optimum shape, in all four cases, has the maxi-
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mum specified volume of 4 m 3. Streamwise lengths are well below the maxi-

mum of 4 m that was allowed, but cone base radii and apex half-angles are

relatively large. There is not much change in optimum shape as altitude varies.

Table 1

Optimized Shapes for Various Altitudes
when Volume -- 4 m3

AIt. km = 100 110 120 130

8 deg = 64.72 63.34 61.35 54.25

Rb m = 2.53 2.48 2.41 2.20

CL = - 1.16 - 0.83 - 0.51 - 0.085

CD = 5.44 5.40 5.31 4.61
CLA m2 = -3.48 - 2.57 - 1.61 - 0.30

optimum proportions are indicated.

accuracy expected of the program,

volumes are equal.

To see the effect of changing the specified maximum volume, a case was

calculated wherein the TSS-2 volume of 2.15 m 3 was taken as the maximum

allowable. Table 2 gives those results, and it is seen that small changes in

The changes in apex angle are within the

Again, the optimum and maximum allowed

Table 2

Optimized Shapes for Various Altitudes
when Volume = 2.15 m3

AIt. km = 100 110 120 130

deg = 63.93 62.50 60.57 55.05

Rb m -- 2.03 1.99 1.94 1.80

CL = - 1.11 - 0.78 - 0.46 - 0.086

CD = 5.24 5.23 5.18 4.75
CLAm 2 = -2.25 - 1.61 - 0.98 - 0.20
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Figure 13 is a photograph of a model of the optimum shape of Table 1 for

100-km altitude. Wings that could be folded under the bottom of the half cone

are shown in extended position. Their total area, A, equals the bottom or

planform area of the half cone. Their optimum angle of attack also has been

calculated, with the results shown in Table 3. Inasmuch as reference area for

the wing CL and Co is the same as for the half-cone coefficients, the coeffi-

cients are additive. That is, neglecting any interference, with wings extended

at 100 km altitude, CL = - 1.16 - 0.49 = - 1.65, and CD = 5.44 + 1.17 = 6.61

based on the area of the flat bottom of the half cone as the reference area.

Table 3

Optimized Wing Angles of Attack for
Sub-Satellite of 4 - m3 Volume

AIt. km = 100 110 120 130

o_deg = - 53.2 - 52.2 - 51.2 - 49.0

CL = - 0.49 -0,33 - 0.19 - 0.10
CD = 1.17 1.31 1.45 1.51

It was remarked earlier that decreased flow field disturbance is a desired

feature of tethered satellites intended for collecting freestream data. Having

found by means of the optimization study that half-cones giving maximum down

force must have surprisingly high apex angles, and being aware that the forces

generated aerodynamically by the sub-satellite body are rather minor com-

pared to overall deployed weight and the drag on the tether, it may be more

reasonable to simply design more slender shapes, half-cones or other bodies,

to minimize flow disturbance and facilitate freestream surveying.

The possibility of determining freestream molecular speed ratio, pressure

and temperature by use of a free-molecule pressure probe of the type shown in

Fig. 14 was suggested in Ref. 6. It was shown that, if S= >> 1 and free-
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molecular-flow exists,

Soo= { 1/(2 "_t-_)}(p1 / P3) _/T3 / T1 (21)

where Pl and T1 are measured inside the orifice at 0 = 0, and P3 and T3 are

measured inside of the orifice at 0 = 90 deg.

defined as

Soo= Uo=/ (2 _ Too) 1/2

where _ is the specific gas constant.

The molecular speed ratio is

(22)

Therefore, if the satellite's velocity is

S. is given by Eq. (21). With S= known, Eq. (22) gives T...

may be obtained from a second equation (see e.g., Ref. 6),

Poo= P3 (1"= / T3) 1/2

known from tracking, a value for _ is estimated from data in Ref. 9, and the

probe pressures and temperatures are known from on-board measurements,

If T= is known, p=

(23)

Values of p= and T,= obtained in this manner would supplement any other

atmospheric data obtained. Although gas-gas or gas-surface chemical chan-

ges are not accounted for in Eqs. (21-23), it is probable that they will not

obviate the pressure and temperature data at 130 km altitude. Implementation

of this technique will require that the probe pictured in Fig. 14 meet the criteria

for free-molecular flow and extend into the undisturbed flow. The first condition

will be relatively easy to meet, but the latter will be far more easily met if a more

slender satellite shape is used.
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CONCLUDING REMARKS

The studies reported were a supportive part of a program intended to

examine various facets of the tethered sub-satellite usage in future aerother-

modynamic experiments. A relatively simple and accurate method for estimat-

ing lift and drag of shapes in transitional rarefied flow was formulated with

partial support from this project. The feasibility of pressure measurement on

and in the flow field of tethered satellites was analyzed. The effectiveness of

aerodynamic stabilization of tethered satellites was explored, and a ring-tail

design was offered as an alternate to the flat-plate stabilizers of TSS-2. A

possible direction of future lower-altitude tethered satellite design was il-

lustrated by coupling an aerodynamic estimation program with a design op-

timization program to define a series of shapes meeting specified criteria.

In addition to the work described in this report, contributions were made in

the form of presentations, papers, and conference participation. These have

been reported elsewhere. Pending the outcome of the initial flight trials and

experiments with shorter tethers, it is uncertain how important the tethered

satellite will become or how rapidly it will be exploited as a means for getting

aerothermodynamic data under orbital and re-entry flight conditions. The body

of preparatory knowledge in the form of analytical tools and assessments that

has been developed will be useful when specific design issues are confronted.
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Figure 12. Isometric sketch of hall-cone satellite
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